Neodymium zirconate (Nd2Zr2O7) transparent ceramics as a solid state laser material
Tao Feng, David R. Clarke, Danyu Jiang, Jinfeng Xia, and Jianlin Shi

Citation: Appl. Phys. Lett. 98, 151105 (2011); doi: 10.1063/1.3579526
View online: http://dx.doi.org/10.1063/1.3579526
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v98/i15
Published by the American Institute of Physics.

Related Articles
Combined experimental and theoretical study of the low temperature dielectric and magnetic properties of trivalent Eu ion doped SrTiO3 ceramics
The long range voice coil atomic force microscope
Large area ceramic thin films on plastics: A versatile route via solution processing
Oxygen deficiency and grain boundary-related giant relaxation in Ba(Zr,Ti)O3 ceramics
J. Appl. Phys. 110, 114110 (2011)
Dielectric and tunable properties of columnar Ba0.6Sr0.4TiO3-MgO composites prepared by spark plasma sintering

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

HAVE YOU HEARD?
Employers hiring scientists and engineers trust
http://careers.physicstoday.org/post.cfm
Neodymium zirconate (Nd$_2$Zr$_2$O$_7$) transparent ceramics as a solid state laser material

Tao Feng,1 David R. Clarke,1,a) Danyu Jiang,2 Jinfeng Xia,2 and Jianlin Shi2
1School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
2Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, People’s Republic of China

(Received 21 February 2011; accepted 27 March 2011; published online 12 April 2011)

Transparent neodymium zirconate (Nd$_2$Zr$_2$O$_7$) ceramics have been fabricated from nanoparticles prepared by combustion synthesis. Emission at 1054.5 nm has been demonstrated using a laser diode pump at 800 nm. A transmittance of 60% at wavelengths longer than ~900 nm was achieved. A consequence of the very high concentration of Nd ions (1.32×1020 ions/m3) is that the absorption bands are wider than those of Nd doped Y$_2$Al$_2$O$_12$ (Nd:YAG) facilitating pumping over a broader range of wavelengths. The full width at half maximum of the emission peak is also larger than that of Nd:YAG, and the decay time is 460 μs making Nd$_2$Zr$_2$O$_7$ an excellent candidate for efficient high-power microchip lasers emitting at 1054 nm with diode pumping at ~800 or ~900 nm. © 2011 American Institute of Physics. [doi:10.1063/1.3579526]

The development of ever more powerful, room-temperature semiconductor laser diodes continues to spur the search for solid state laser materials that can use these diodes for optical pumping. The search has principally been in the area of neodymium and ytterbium doped materials, such as Nd:YAG, and the sesqui-oxides, including both single crystals and polycrystalline ceramics. The latter class of material often enables higher concentrations of dopants to be incorporated than is possible in single crystals formed by solidification. In the majority of cases, though, the concentration of the active ion is still limited by concentration quenching of the emission and so the active ion is typically a dopant with low concentration rather than being a major constituent of the host crystal structure. In this contribution we demonstrate that Nd$_2$Zr$_2$O$_7$ (NZO), which has the cubic pyrochlore crystal structure, is a candidate solid state laser material for optical pumping of emission from the Nd ions. This suggests that other rare-earth oxides with the pyrochlore structure, such as Eu$_2$Zr$_2$O$_7$, might also be candidates for other diode pumped solid state lasers.

Key to the synthesis and densification of transparent material has been the use of combustion synthesis of Nd$_2$Zr$_2$O$_7$ powders prepared from nitrates of zirconium and neodymium using ethylene diamine tetra-acetic acid (EDTA) as the fuel. Neodymium nitrate was prepared by dissolving Nd$_2$O$_3$ in nitric acid and solutions of ZrO(NO$_3$)$_2$, were prepared by dissolving ZrO(NO$_3$)$_2$ in de-ionized water. Mixed solutions containing Nd$^{3+}$ and Zr$^{4+}$ ion were prepared from the as-prepared nitrate solutions to form a Nd$_2$Zr$_2$O$_7$ precursor solution with a molar ratio Nd$_2$O$_3$:ZrO$_2$=1:2. The solution was continuously stirred at 85–90 °C on a hot plate, and an appropriate amount of EDTA aqueous solution (EDTA to metal ion ratio of 1) was added to the metal ion solution while stirring. The solution slowly became more viscous, turning into a gel. The gel was then placed into a furnace preheated to 500 °C for the combustion, resulting in a tan-colored powder. This powder was then calcined for 2 h at 950 °C.

Although the powders are slightly agglomerated because of the formation of particle necks by sintering at the high calcining temperature, the average particle size is about 40 nm. An example is shown by the transmission electron microscopy (TEM) micrograph in the inset to Fig. 1. The particle morphology is near spherical, which also proves beneficial to fabrication of transparent ceramics. X-ray diffraction indicated that the powder was phase-pure Nd$_2$Zr$_2$O$_7$ and fully crystalline at this stage. In the next step in the fabrication, the powder was cold pressed into disks ~20 mm in diameter at 70 MPa and then cold isostatically pressed at 200 MPa. Specimens were then pre-sintered at 1000 °C for 2 h in air to remove any residual organics. Finally, disk-shaped samples were sintered in dry hydrogen at 1800 °C for 6–12 h using a heating rate of 15 °C/min. After sintering, the samples were annealed at 1200 °C for 4 h in air for strain relief, then cooled down to room temperature in the furnace. X-ray diffraction of the sintered oxide indicates that the material has been the use of combustion synthesis of Nd$_2$Zr$_2$O$_7$ powders prepared from nitrates of zirconium and neodymium using ethylene diamine tetra-acetic acid (EDTA) as the fuel. Neodymium nitrate was prepared by dissolving Nd$_2$O$_3$ in nitric acid and solutions of ZrO(NO$_3$)$_2$, were prepared by dissolving ZrO(NO$_3$)$_2$ in de-ionized water. Mixed solutions containing Nd$^{3+}$ and Zr$^{4+}$ ion were prepared from the as-prepared nitrate solutions to form a Nd$_2$Zr$_2$O$_7$ precursor solution with a molar ratio Nd$_2$O$_3$:ZrO$_2$=1:2. The solution was continuously stirred at 85–90 °C on a hot plate, and an appropriate amount of EDTA aqueous solution (EDTA to metal ion ratio of 1) was added to the metal ion solution while stirring. The solution slowly became more viscous, turning into a gel. The gel was then placed into a furnace preheated to 500 °C for the combustion, resulting in a tan-colored powder. This powder was then calcined for 2 h at 950 °C.
terial is a single phase pyrochlore as shown in Fig. 1.

The samples obtained were transparent but had a grayish hue as shown in Fig. 2. Moreover, objects 1 or 2 m away could be resolved through polished 1 mm thick disks when held to the eye. Optical transmission spectra were obtained on a UV 2501 PC spectrophotometer (Shimadzu, Japan) from 200 to 1100 nm. The spectral transmittance of a 1.5 mm thick sintered Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} disk is compared to that of a Nd:YAG (Nd doped Y\textsubscript{3}Al\textsubscript{5}O\textsubscript{12}) transparent ceramic disk of the same thickness in Fig. 3. As expected, both compounds exhibit the same absorption bands. Notably, though, all the absorption bands, particularly those of interest for optical pumping 900, 800, 750, 590 nm, are all significantly broader as evident from the spectra. In part this is attributed to the higher concentration of Nd ions in Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7}. It is also because of the different crystal field splitting associated with the crystallo-
graphic site symmetry of the Nd3+ ions in Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7}; Nd3+ ions in Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} have a D\textsubscript{3d} symmetry whereas the site symmetry of Nd3+, which substitutes for the Y3+ ions in KNdP\textsubscript{4}O\textsubscript{12} is D\textsubscript{2}.

The fluorescence lifetime of Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} is 1054.5 nm, which is somewhat shorter than that of Nd:YAG. The fluorescence lifetime of 800 nm LD laser is presented in Fig. 4. The emission peak is at 1054.5 nm. The combination of broad full width at half maximum (FWHM) absorption bands, larger FWHM emission and the longer lifetime makes Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} an attractive material for a laser host material. Table I compares the Nd concentration and the refractive index of Nd\textsubscript{2}O\textsubscript{3}, Nd:YAG, KNd(PO\textsubscript{4})\textsubscript{4}, NdAl\textsubscript{11}(BO\textsubscript{4})\textsubscript{4} with that of Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7}. As the lattice parameter of Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} is 1.0648 nm,3 and the number of formula units in the unit cell, Z=8, the Nd concentration of Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} is near \(1.32 \times 10^{28}\) ions/m3. This is higher than either KNd(PO\textsubscript{4})\textsubscript{4} phosphate and NdAl\textsubscript{11}(BO\textsubscript{4})\textsubscript{4} borate, which have concentrations of \(\sim 5 \times 10^{27}\) ions/cm34 but notably less than in Nd\textsubscript{2}O\textsubscript{3}. As the average Nd–Nd distance between ions varies with the inverse cube of the concentration, the average Nd–Nd distance in Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} falls between that of Nd\textsubscript{2}O\textsubscript{3} and Nd:YAG. Another significant difference is that in Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} the spacing between Nd ions is fixed by their positions in the unit cell. This is possibly responsible for the significantly longer room temperature lifetime exhibited by the Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} ceramic.

The combination of broad full width at half maximum (FWHM) absorption bands, larger FWHM emission and the longer lifetime makes Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} an attractive material for high-power applications. The broader absorption bands, especially at ~800 and ~900 nm, reduce the requirements for temperature stability of the pump laser. The ability to pump at ~900 rather than ~800 nm, reduces the heat generated during pumping. In addition, the broader emission at 1054.5 nm implies that a shorter laser pulse can be created than using Nd:YAG as a laser material. Studies of the dependence of pump power on output power are underway and will be reported later.

Table I. Characteristic features of Nd laser host materials.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Nd concentration (ions/m3)</th>
<th>Average Nd–Nd distance (nm)</th>
<th>Refractive index</th>
<th>Lifetime ((\mu)s)</th>
<th>Emission FWHM (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd\textsubscript{2}O\textsubscript{3}</td>
<td>(1.29 \times 10^{10})</td>
<td>0.376</td>
<td></td>
<td></td>
<td>None concentration quenching</td>
</tr>
<tr>
<td>Nd (1 at %):YAG</td>
<td>(1.38 \times 10^{16})</td>
<td>1.935</td>
<td>(n_\parallel = 2.11), (n_\perp = 2.1) (Ref. 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNd(PO\textsubscript{4})\textsubscript{4}</td>
<td>(4.08 \times 10^{7}) (Ref. 4)</td>
<td>0.698</td>
<td>(n_\parallel = 1.592), (n_\perp = 1.600) (\lambda = 632) nm (Ref. 7)</td>
<td>90 (Ref. 7)</td>
<td>5 @ 1051 nm (Ref. 4)</td>
</tr>
<tr>
<td>NdAl\textsubscript{11}(BO\textsubscript{4})\textsubscript{4}</td>
<td>(5.43 \times 10^{27}) (Ref. 7)</td>
<td>0.560</td>
<td>(n = 1.75 @ 1.06) (\mu)m (Ref. 8)</td>
<td>16 (Ref. 9)</td>
<td>2.5–3 @ 1065 nm (Ref. 4)</td>
</tr>
<tr>
<td>Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7}</td>
<td>(1.32 \times 10^{28})</td>
<td>0.463</td>
<td></td>
<td>2.11 (Ref. 10)</td>
<td>460 (Ref. 2)</td>
</tr>
<tr>
<td>Nd (1a/o): YLiF\textsubscript{4}</td>
<td>(1.39 \times 10^{26})</td>
<td>1.928</td>
<td>(n_\parallel = 1.45), (n_\parallel = 1.47) (Ref. 11)</td>
<td>460 (Ref. 2)</td>
<td>20 @ 1054.7 nm (Ref. 12)</td>
</tr>
</tbody>
</table>

![FIG. 2](image1.png)
FIG. 2. (Color online) Transparent Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} pellets sintered under hydrogen atmosphere at 1800 °C for 6 h (polished, thickness = 1 mm).

![FIG. 3](image2.png)
FIG. 3. (Color online) Comparison of the spectral transmittance of 1 mm thick disks of Nd\textsubscript{2}Zr\textsubscript{2}O\textsubscript{7} and YAG transparent ceramics.
In summary, we have fabricated transparent Nd$_2$Zr$_2$O$_7$ ceramics from nanocrystalline powders prepared by a combustion method and shown that they emit at 1054.5 nm when pumped with a semiconductor 800 nm laser diode. The results also suggest that other rare-earth pyrochlores and the related delta-phase crystal structures may also promising laser materials. For instance, strong emission and long lifetimes (1 ms) at room temperature have previously been reported from Eu$_2$Zr$_2$O$_7$.1

FIG. 4. (Color online) Emission at 1054.5 nm from a 1 mm thick Nd$_2$Zr$_2$O$_7$ transparent disk pumped with a 800 nm GaAlAs diode laser.