联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
科技信息
Modifications to non-ful...
北京大学于海峰团队合作发...
上海微系统所范德瓦尔斯异...
加拿大科学家开发出低成本...
'Sweet spot' in sweet ma...
Method to grow large sin...
瑞士科学家筛选出上千种潜...
韩国开发出锂电池用高性能...
意大利科学家研发纳米技术...
Flat gallium joins roste...
Researchers develop a ne...
科学家仿效蝴蝶翅膀结构开...
美科学家在原子层面“无缝...
极端光学创新研究团队在超...
Energy harvester collect...
现在位置:首页>新闻动态>科技信息
New conductive coating may unlock biometric and wearable technology of the future
2018-03-14 08:21:37 | 【 【打印】【关闭】

Fig. 1. Structural and morphological characterizations of MXene multilayers. (A) Schematic of the PDAC/MXene LbL assembly process. Images of (B) immersion AQ48 and (C) spray assembly of multilayer coatings of varying number of layer pairs on glass. (D) A cross-sectional scanning electron microscopy (SEM) image of the mulAQ49 tilayer coating. (E) Ultraviolet-visible (UV-vis) spectra of MXene multilayers on glass. (F) Absorbance values at 770 nm versus number of layer pairs. a.u., arbitrary units. AQ50 (G) Growth profile of the multilayers on glass. (H) Root-mean-square (RMS) roughness versus number of layer pairs. Credit: H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, J. L. Lutkenhaus

  A team of researchers from the College of Engineering at Texas A&M University have developed a mechanically robust conductive coating that can maintain performance under heavy stretching and bending.

  Stretchable, bendable and foldable electronics are crucial for the development of emerging technologies like adaptive displays, artificial skin, and biometric and wearable devices. This presents a unique challenge of balancing electronic performance and mechanical flexibility. The difficulty lies in finding a material that can withstand a wide array of deformations, like stretching, bending and twisting, all while maintaining electrical conductivity. Adding to the challenge is the need for this conductivity to be engineered into a variety of different surfaces, such as cloth, fiber, glass or plastic.

  A collaborative team from the Artie McFerrin Department of Chemical Engineering and the Department of Materials Science and Engineering led by Dr. Jodie Lutkenhaus , associate professor and holder of the William and Ruth Neely Faculty Fellowship, has solved this problem through the development of a new surface-agnostic stretchable, bendable and foldable conductive coating, opening the door for a wide variety of flexible electronics.

  Two-dimensional metal carbides (MXenes) were chosen as the main focus of the research as previous research has shown them to have a metallic-like conductivity. The previous research on MXenes has focused primarily on the materials in the form of sheets. Although these sheets have the desired conductivity, they are not stretchable and their integration into different surfaces has not been shown.

MXene multilayer on PET detects bending deformations. Credit: H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, J. L. Lutkenhaus

  Rather than using MXene sheets, the Texas A&M research team created MXene coatings through the sequential adsorption of negatively charged MXene sheets and positively charged polyelectrolytes using an aqueous assembly process known as layer-by-layer (LbL) assembly (See image 1-A). The results of this process, described in depth in the latest issue of Science Advances, demonstrate that MXene multilayer coatings that can undergo large-scale mechanical deformation while maintaining a high level of conductivity (see video). The team has also successfully deposited the MXene multilayer coatings onto flexible polymer sheet, stretchable silicones, nylon fiber, glass and silicon.

MXene multilayer coatings rendered nylon fibers conductive. Credit: Hyosung An, Texas A&M University

  Explore further: Researchers develop highly stretchable aqueous batteries 

  More information: "Surface-agnostic highly stretchable and bendable conductive MXene multilayers"Science Advances (2018). DOI: 10.1126/sciadv.aaq0118 , http://advances.sciencemag.org/content/4/M/eaaq0118  

  Journal reference: Science Advances 

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899