Sb₂O₃ 掺杂对提高 PbWO₄ 晶体光学 及闪烁性能的作用

王绍华 沈定中 任国浩 倪海洪 蔡晓琳 殷之文 (中国科学院上海硅酸盐研究所,上海 200050)

摘 要 采用改进的布里奇曼(Bridgman)法生长了掺杂 Sb₂O₃ 的 PbWO₄ 晶体。基于透射光谱、紫外 激发及其发射谱、X 射线激发的发射谱、光输出和辐照损伤等方面的测试,讨论了 Sb₂O₃ 掺杂对提 高 PbWO₄ 晶体光学及闪烁性能的作用。

关键词 PbWO4 晶体, 布里奇曼(Bridgman)法生长, Sb₂O₃。

1 引 言

钨酸铅晶体(PWO)具有密度高、发光衰减时间快、无吸湿性、化学稳定性好和生产成本 低等一系列优点,被欧洲核子研究中心(CERN)选定用来建造大型强子对撞机(LHC)的闪烁探 测器^[1]。但是,由于 PWO 晶体在室温下光输出较低,如何提高其光输出是 PWO 晶体研究与 开发工作的重点之一。PWO 晶体的发光主要是蓝发光和绿发光,其中蓝发光主要贡献快分 量,绿发光既有快分量也有慢分量^[2],而快分量是我们所需要的。虽然目前已使 PWO 晶体的 光输出大大提高,可是,在其光输出中,有相当大的部分是慢分量或超慢分量^[3],而且慢分 量和超慢分量主要来自于绿发光^[4]。因此,提高 PWO 晶体的蓝发光对其光产额的贡献显然至 关重要。

PWO 晶体的蓝发光带的发射峰位于 410440 nm,而晶体中又常存在 350 nm 和420 nm的吸 收带,它们大大降低了光产额。晶体生长实践表明,420 nm 的吸收带可通过控制原料中特殊 杂质的含量和优化生长工艺基本解决,而 350 nm 透过率低的问题则需要采用掺杂剂来解决。

生长 PWO 晶体使用的原料是 PbO 和 WO₃ 粉末。在晶体生长的过程中,由于 PbO 和 WO₃ 的不等量挥发⁵¹ 会导致晶体偏离化学计量配比,使晶体中存在大量的铅、氧空位⁶¹,并由此 而产生复杂多样的缺陷心,从而影响 PWO 的性能,因此,必须掺入一定量的特定杂质来消除 这些缺陷心。

在 PWO 晶体中掺杂 Sb2O3 的消色作用研究国内已有报道^[7],研究的晶体样品是采用提拉 法生长的^[8]。我们研究发现,采用开放系统的提拉法生长掺 Sb2O3 钨酸铅晶体较之采用下降 法封闭坩埚生长更易导致 Sb2O3 挥发,且采用下降法生长掺 Sb2O3 的钨酸铅晶体似乎更能反 映掺Sb效果。在下降法生长的PWO 晶体掺杂改性研究中发现,Sb₂O₃ 的掺杂对于PWO 晶体性能的影响是多方面的,本文就此进行报道。

2 样品的制备与性能测试

2.1 样品的制备

采用纯度为 99.999%的 PbO 和 WO₃ 粉体作为原料,按照 PbO $:WO_3 = 1:1$ 的摩尔比配制 PbO 和 WO₃ 的混合粉料两份,其中一份是不掺杂的,另一份掺入原子分数为 0.1%的 Sb₂O₃,分别装入两只坩埚中并封口。采用改进的布里奇曼(Bridgman)法生长晶体,籽晶取向[001],坩埚下降速度为 1 mm/h。晶体出炉后,从籽晶端开始截取晶体,长度为 95 mm,加工成为 25 mm×25 mm×95 mm的长方体,六面抛光。非掺杂晶体和掺杂 Sb₂O₃ 的晶体分别标记为 1[#]和 2[#]晶体,以便用于测试。

2.2 性能测试

采用日本岛津生产的 UV-2501 型分光光度计测量晶体的光学透过率,狭缝宽度 5 nm。

晶体的紫外激发、发射光谱是在英国 PERKIN ELMER 公司生产的 50B 荧光光谱仪上测量的。

X 射线激发的发射谱是在组装仪器上测量的,谱仪工作原理在其它文章已有介绍¹⁹。X 射线管的工作电压为 80 kV,电流为4 mA,测量的波长范围为 200700 nm,记录量程为 05 mV。

Fig. 1 The setup for light output measurement

晶体用两层 Tyvek 纸包裹, 仅露出一个出光面 对准单色仪的入光孔。

晶体的光产额测量也是在组装仪器上进 行的。 仪器的各部分装置由欧洲核子研究中 心和美国加州理工学院提供, 仪器工作原理 示于图 1。光产额测量时的温度为 23 ℃, 用恐 γ射线 源照射, 用 Hamanatu 光电倍增管 (R2059 PMT)接收闪烁光。晶体的一端与光电 倍增管耦合, 其余部分用两层 Tyvek 纸包裹。

3 性能测试结果

3.1 透射光谱

垂直晶体长轴测量 1[#]和 2[#]晶体的透过率,测量位 置选在晶体的中间,光程 L 为 25 mm,测量结果示于图 2。从图 2 中可见, 2[#]晶体在 350420 mm 波段范围内的透 过率明显高于 1[#]晶体的透过率,透过率曲线在透射截 止波长附近的形状陡立;而 1[#]晶体在 350 nm 附近的透 过率很低,透过率曲线在透射截止波长附近平缓,斜率 很小。在 420800 nm 波段范围内,两个晶体的透过率相 差不大。

Fig. 2 The transmission curves of $1^{\#}$ and $2^{\#}$

crystals (L = 25 mm) (C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www

8期

1124

晶体的 X 射线激发的发射光谱示于图 3。2[#]晶体的发射谱有明显的两个发射峰,分别位 于 408 nm 和 432 nm; 1[#]晶体发射谱为单峰谱带,峰值位于 442 nm,发光强度小于 2[#]晶体。对 众多掺杂 Sb2O3 的钨酸铅晶体进行的 X 射线激发发射谱测量结果表明,发射谱均存在双峰结 构。沿晶体生长方向分段测量晶体的 X 射线激发的发射谱时发现,靠近籽晶端,发射谱基本 为单峰或双峰不明显,沿晶体生长方向双发射峰越来越明显,相信这与晶体中 Sb 含量沿晶体 生长方向递增有关。

根据 X 射线激发发射谱的提示,对掺 Sb₂O₃ 钨酸铅晶体进行了紫外激发发射谱测量,结 果表明双峰结构也普遍存在。图 4 示出了 2[#]晶体和 1[#]晶体的紫外激发、发射谱。从图 4 可 见,2[#]晶体的激发峰分别位于 362 nm 和 387 nm,发射峰位于 407 nm 和 423 nm; 1[#]晶体的激 发峰位于 315 nm,发射峰位于 407 nm。

Fig. 3 The luminescence spectra of 1 $^{\#}$ and 2 $^{\#}$ crystals under X-ray excitation

Fig. 4 Excitation emission spectra of 1 $^{\#}$ and 2 $^{\#}$ crystal

3.3 光输出

采用不同的积分时间门宽测量晶体的光产额结果列于表 1。从表 1 可以看出,2[#]晶体的 光产额 y 明显高于 1[#]晶体的光产额,而且快、慢发光分量都增加较多。其中,2[#]晶体 y (100 ns)/ y (1000 ns)=83.8%, 1[#]晶体 y (100 ns)/ Y (1000 ns)=81.5%, 说明掺杂 Sb₂O₃ 晶体的 发光快、慢成分之比高于纯晶体的发光快、慢成分之比。表 1 中 *n* 为光电子数。

		0	1	2		5		
integrated time/ ns	35	50	100	200	500	1000	2000	crystal
light output	8.42	11. 57	15.09	16.36	17.87	18.00	18.57	2 [#] crystal
/(<i>n</i> /MeV)	7. 35	8. 94	10. 38	11.07	12.50	12.74	13.64	1 [#] crystal

Table 1. Light output of $1^{\#}$ crystal and $2^{\#}$ crystal

3.4 辐照损伤

采用co源照射 2[#]晶体, 照射剂量率为 2.8× 10^{-6} Gy/s, 照射时间为 72 h。 辐照后测量晶体的光产额并与辐照前的光产额对比列于表 2。

				-				
integrated time / ns	35	50	100	200	500	1000	2000	
light output	8.42	11.57	15.09	16.36	17.87	18.00	18. 57	before irradiation
/(n/MeV)	7.92	10.51	13.52	14. 58	15.93	16. 13	16.30	after irradiation
losts of $y / \frac{1}{2}$	5.90	9.10	10.40	10.80	10.80	9.40	12. 20	

Table 2. Light yield of $2^{\#}$ crystal before and after radiation

(C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www

对1[#]和2[#]晶体在辐照前后的光学透过率进行 了纵向测量,光程为95 mm,结果示于图5。通过比 较晶体辐照前后透过率曲线,可以看出辐照后的2[#] 晶体在550650 nm 波段范围内的透过率有所降低,而 1[#]晶体辐照后在400800 nm 波段范围内的透过率下 降幅度很大,说明辐照诱导的吸收色心浓度高,类 型复杂。

Fig. 5 The transmission curves of 1[#] and 2[#] crystals before and after irradiation

4 讨 论

在严格控制原料纯度和优化生长工艺的前提下, PWO 晶体的光学性能和闪烁性能取决于 晶体结构和晶体本征结构缺陷。Moreau 等人研究表明, PWO 晶体结构可有两种类型: 纯白钨 矿型和类白钨矿型 (Pb7W8O32-x, x = 3.2)¹⁹。在晶体生长过程中,由于 PbO 组分的过量挥发 而导致晶体中的铅、氧缺位,它们在这两种结构类型的晶体中都存在。晶体生长初期,晶体 的结构为纯白钨矿型;到了生长后期,晶体结构转化为类白钨矿型;晶体生长中期,两种结 构类型共存于同一个晶体中,两者所占的比例大小则取决于具体的生长工艺⁹¹。由于晶体中 Pb²⁺离子的缺位,因而产生了 O⁻V_{pb}O⁻缔合缺陷心。Annenkov 等人对 PWO 晶体 350 nm 吸收 带的起源进行了研究,认为 O⁻ 是 350 nm 吸收带产生的根源^[10]。本文作者在晶体中掺入 Sb₂O₃ 后, Sb³⁺离子将补偿晶体中的 Pb²⁺离子空位,减少晶体中O⁻的浓度,从而提高 350 nm 的透过率,如图 2。

与非掺杂 PWO 晶体比较,掺入 Sb₂O₃ 的 PWO 晶体的紫外激发、发射谱和 X 射线激发的 发射谱出现双峰谱带,且峰位也不同,说明其发光机制发生了改变。这可能与 Pb²⁺、Sb³⁺离 子半径、离子类型和价态的差异有关:Sb³⁺离子半径是 8.5 nm,Pb²⁺离子半径是13.7 nm,它 们均属于极化能力强的铜型离子。由于 Sb³⁺离子比 Pb²⁺离子的半径小、电荷多,与 Pb²⁺离子 比较起来,它对 O²⁻离子具有相对更强的极化作用。Sb³⁺离子的掺入可能会使邻近的 O²⁻离 子的电子云发生形变,使 Sb³⁺与 O⁻离子之间的距离缩短,由此改变了 W-O 之间电子云重叠 状态和价电子的能量状态,同时也可能略微改变了 W-O 四面体的对称性。这样,对晶体的能 带结构可能产生一定的影响(例如局域能级、价带和导带极值的位置),从而使发光机制有所 变化。

从图 3 所示的 X 射线激发的发射谱可以看出,掺 Sb₂O₃ 晶体的发射主峰相对非掺杂晶体 的发射主峰蓝移。作者认为,这可能是由于 Sb₂O₃ 掺杂消除了晶体中部分氧空位的缘故。PWO 晶体的蓝发光是 Pb²⁺离子敏化 WO²⁻ 基团的发光,而绿发光是 Pb²⁺离子敏化 WO₃+F₁ 心和 WO₃+F₂ 心的发光^[11]。其中,F₁和 F₂ 分别是仅与 W 相连接的 O 和同时与 W、Pb 相连接的 O 缺位产生的。晶体中掺入了 Sb₂O₃ 后,Sb³⁺离子补偿 Pb²⁺空位的同时,一部分 O²⁻离子补偿 了 O.空位,通过消除部分 WO₃+F₁ 心和 WO₃+F₂ 心,从而降低了晶体绿发光中心浓度,使规 则的 WO^{2—} 浓度增加,即提高了蓝发光中心的浓度。 在 X 射线激发的发射光谱上,表现为发 光主峰蓝移。

将图 3 所示的 1[#]晶体和 2[#]晶体的 X 射线激发的发射谱(XSL)与图 4 所示的紫外激发的 发射谱(PSL)进行比较可以看出, X 射线激发发射谱的发光主峰有明显红移,非掺杂晶体表现 得更明显。通过对众多 PWO 晶体的 X 射线激发的发射谱和紫外激发的发射谱进行对比,发 现 X 射线激发的发射谱主峰相对紫外激发的发射谱主峰均有一定程度的红移, 即 X 射线激发 的发光较光致发光有更多的绿发光成分。

2[#]晶体光产额的提高主要应归因于透过率的提高。从该晶体的发射峰位(图 3 和图 4)可 看出,晶体的发光主要是蓝发光,而从透射谱(图 2)上可看到该晶体在 350800 nm 波段的透过 率与非掺杂晶体的透过率相比有不同程度的提高,特别是在 350420 nm 波段范围内,透过率 提高很多。

对比 2[#]晶体在辐照前、后光输出(表 2)和透过率(图 2)的变化可以看出,掺 Sb₂O₃ 晶体抗 辐照损伤能力还不能达到指标 [Loss_y (100 ns) < 10%]要求。对 PWO 辐照损伤的大量研究表 明,辐照损伤不影响晶体的发光机制,而是通过降低晶体的光学透过率影响晶体的光输 出^[12]。2[#]晶体辐照后,其透过率在 550650 nm 波段范围内有所降低。Annenkov 等人对 PWO 晶 体辐照损伤引起透过率降低的起源进行了较详尽的实验研究和理论分析,指出晶体辐照后产 生的 500750 nm 吸收带起源于(WO₃-WO₃)²、O⁻Ve^{*}O⁻和O⁻Ve^{O-}缺陷心^[9]。其中,Ve^{*}代表类 白钨矿结构晶体中的正离子空位,Ve^{*}代表纯白钨矿结构晶体的正离子空位。根据这种认识进 行推测,2[#]晶体中可能还残余或因辐照诱导的一些 Pb²⁺离子空位和 O⁻,它们生成缔合缺陷 心而使晶体辐照损伤。对大量掺杂 Sb₂O₃ 晶体的测试结果表明,Sb₂O₃ 掺杂在很大程度上提高 了晶体的光学透过率和光输出,但是辐照损伤仍然较大,因此,从提高 PWO 晶体抗辐照性能 的角度来看,Sb₂O₃ 是不是可用的掺杂剂有待深入研究。

结 论 1) Sb₂O₃ 掺杂可以提高 PWO 晶体的光学透过率,特别是在 350420 nm 波段的透过率;

- 2) Sb_2O_3 掺杂使 PWO 晶体的蓝发光向短波移动;
- 3) Sb2O3 掺杂可以提高 PWO 晶体的光输出;

4) Sb2O3 掺杂能否提高 PWO 晶体的辐照硬度有待进一步研究。

参考文献

- [1] Lecoq P. The lead tungstate calorimeter of the CMS experiment at LHC. In: Pieter Dorenbos Carel W E van Eijk edit., Proc. Int. Conf. on Inorganic Scintillators and Their Applications, SCINT95, Netherlands: Delft University Press, 1996. 5261
- [2] Belsky A N, Mikhailin V V, Vasiler A N et al. Fast luminescence of undoped PbWO₄. Chem. Lett., 1995, 234 (5, 6) '552558
- [3] Lecoq P. The challenge of new scintillator development for high energy physics. In: Yin Zhiwen, Li Peijun, Feng Xiqi et al., edit., Proc. Int. Conf. on Inorganic Scintillators and Their Applications, SCINT97, Shanghai: CAS Shanghai Branch Press 1997. 1317
- [4] Kobayashi M, Ishii M, Harada K et al.. Scintillation and phosphorescence of PbWO₄ crystals. Nucl. Instrum. and Methods Phys. Resear., 1996 A373:333346 (C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www

- [5] 廖晶莹, 沈炳孚, 邵培发等. 钨酸铅晶体生长及其组分挥发. 无机材料学报, 1997, 12(3):286290
- [6] Moreau J M, Galez Ph, Peigneux J P et al.. Structural characterization of PbWO₄ and related new phase Pb₇W₈O_(32x). J. Alloys. Compounds, 1996 238:4648
- [7] 孙尚文,韩爱珍,李铭华等. 提高 PbWO4 晶体光学性能的研究. 光学学报, 1997, 17(6)*817819
- [8] 拉宾诺维奇 BA, 哈文 E R 编. 尹承烈译. 简 明化学 手册, 北京: 化学 工业出版社, 1983. 195
- [9] Annenkov A N, Auffray E, Korzhik M et al. On the origin of the transmission damage in lead tungstate crystals under irradiation. CMS CERN GENEVA, Switzerland, 1998. CMS NOTE 1998/041
- [10] Annenkov A N, Fedorov A A, Galez Ph *et al.*. The influence of additional doping on the spectroscopic and scintillation parameters of PbWO₄ crystals. *Phys. Stat. Sol* (*A*), 1996, **156**:493504
- [11] Korzhik M V, Pavlenko V B, Katchanov V A et al.. The scintillation mechanism in crystals. Mat. Res. Soc. Symp. Proc., 1994, 348 '285290
- [12] Auffray E, Dafinei I, Gautheron F et al.. Scintillation characteristics and radiation hardness of PWO scintillators to be used at the CMS electromagnetic calorimeter at CERN. In: Pieter Dorenbos, Carel W E van Eijk edit., Proc. Int. Conf. on Inorganic Scintillators and Their Applications, SCINT 95, The Netherlands: Delft University Press 1996. 282285

Improvement of Optical and Scintillation Performances of PbWO₄ Crystal by Sb₂O₃-Doping

Wang Shaohua Shen Dingzhong Ren Guohao Ni Haihong Cai Xiaolin Yin Zhiwen

(Shanghai Institute of Ceramics, The Chinese Academy of Sciences, Shanghai 201800) (Received 5 February 1999; revised 15 April 1999)

Abstract Sb-doped PbWO₄ crystals have been grown by means of modified Bridgman method. Based on the results of measuring their transmission spectra, excitation-emission spectra, X-ray excited luminescence spectra, light output and irradiation damage, the effects on improving the optical and scintillation performances of PbWO₄ crystal have been discussed.

Key words $PbWO_4$ crystal, Bridgman method, Sb_2O_3 .