第 27 卷第 6 期

硅 酸 盐 学 报

1999年12月

JOURNAL OF THE CHINESE CERAMIC SOCIETY

Vol. 27, No. 6 December, 1999

水热法制备 BaTiO₃ 粉体

李汶军 施尔畏 郑燕青 夏长泰 殷之文 (中国科学院上海硅酸盐研究所高性能陶瓷超细结构国家重点实验室)

摘 要 以 $Ba(OH)_2^{\circ}8H_2O$ 和 TiO_2 为前驱物, 在水热条件下制得了单一物相的 $BaTiO_3$ 粉体. 发现产物的物相与反应温度 和前驱物的 $BaTi 摩尔比有关. 由负离子配位多面体生长基元模型分析了 <math>BaTiO_3$ 粉体的形成机理. 指出了形成 $BaTiO_3$ 粉 体的生长基元为 $Ba(OH)_{12}^{10}$ 和 $Ti(OH)_6^{2-}$. 由此比较合理地解释了粉体的物相以及 Ba, $Ti 摩尔比对 BaTiO_3$ 粉体形成的影 响

关键词 生长基元, 钛酸钡, 粉体, 物相 中图法分类号 0 782

BaTiO₃ 作为一种性能特异的电子陶瓷, 被广泛用于制作自动温控发热元件、多层陶瓷电容器和电光器件等¹¹.目前, 工业上常用煅烧 BaCO₃ 和 TiO₂ 或 BaTi[C₂O₄] 2°4H₂O 的方法来制备 BaTiO₃ 粉体材料.由于煅烧温度较高,得到的粉体硬团聚严重,烧结性能差.为制得性能更优的陶瓷粉体以适应现代技术发展的要求,近年来,采用各种湿化学方法制备陶瓷粉体的研究获得了广泛的重视,它们在制备高纯、均一、超细的多组分粉体方面显示了令人振奋的应用前景.其中水热法制得的粉体因其结晶度高、团聚少、烧结活性好,正获得越来越广泛的重视.

Christensen 等³首先报道了 BaTiO₃ 晶粒的水热合成:在 380~450 ℃, 30.3~50.5 MPa 的水热条件下,以新制水合二氧化钛和 Ba(OH)2°8H2O 为前驱物,在1 mol/L NaOH 水溶液中 制得了结晶度高、粒度小的 BaTiO₃ 粉体. 后来,Kaneko 等^[3]又报道了用酯或钛的氧化物胶体 为原料制备 BaTiO₃ 粉体的方法.最近,Kutty 研究小组^[4~9]发现在低达 85 ℃及 15~65 MPa 的水热条件下也能获得超细 BaTiO₃. Hennings 等^{7.8}则通过对 Ba一Ti 的乙酸混合凝胶的水 热处理获得 200~300 nm 结晶度高的 BaTiO₃ 粉体.但在水热条件下复合氧化物粉体的相转 变比较复杂,很难制得纯度很高的 BaTiO₃ 粉体.Malgorzata 等^[9]试图采用热动力学方法通过 计算出在溶液中产物的相图来选择反应条件,但溶液中的离子团的热动力学参数和离子团活 度系数等参数都很难通过实验测得,因此采用通过绘制相图来选择反应条件存在一定难度. 本工作利用负离子配位多面体生长基元模型对水热法制备 BaTiO₃ 粉体的反应条件进行预测. 并由此解释在制备复合氧化物粉体时出现的各种现象.

1998年11月18日收到.

通讯联系人:李汶军,男,30岁,助理研究员,中国科学院上海硅酸盐研究所,上海 200050.

(C)1994-2019 China Academic Journal Electronic Publishing House. All rights reserved. http://www

1 实 验

采用 $$30 \text{ mm} \times 430 \text{ mm}$ 的管式高压釜, 内加贵金属内衬,高压釜作分段加热,以建立 适宜的上、下温度梯度.进行不同反应温度 (75~400 °C)、不同反应时间的水热反应.水 热反应后,将得到的粉体以乙酸调至中性,用 去离子水充分洗涤,再用乙醇洗涤,在 100 °C 下烘干后,对样品作 TEM 和 XRD 检测.

2 结果和讨论

270 m

图 1 Ba, Ti 摩尔比为 2·1 在 300 [℃]制得的粉体的 TEM 照片

2.1 前驱物 Ba, Ti 摩尔比的影响

在溶液中很难由两种单组分氧化物或氢

氧化物通过水热反应合成单一物相的多组分氧化物粉体.由于在溶液中 BaTiO₃ 的格点能比 TiO₂ 的格点能大^[10 1],因此在溶液中 TiO₂ 有可能转变为 BaTiO₃.为了使水热溶液中前驱物 之间的反应完全,以 Ba(OH)₂°8H₂O 和市售无水 TiO₂ 粉为反应前驱物,在不同 Ba, Ti 摩尔比 的条件下进行水热实验,其结果如表 1.

			-	
$n(\operatorname{Ba}^{2+})$: $n(\operatorname{Ti}^{4+})$	Temperature ∕℃	Time/ h	Phase	Particle size / nm
1:1	300	8	TiO ₂ , BaTiO ₃	170
1.5:1	300	8	BaCO ₃ , BaTiO ₃	190
2:1	300	8	BaCO ₃ , BaTiO ₃	240
1:1	75	8	TiO ₂ , BaTiO ₃	140
1:1	150	8	TiO ₂ , BaTiO ₃	150
1:1	200	8	TiO ₂ , BaTiO ₃	160
1:1	400	8	BaTiO ₃	240

表 1 不同条件下制得的 BaTiO₃ 粉体的特性 Table 1 Characteristics of BaTiO₃ powder at different conditions

Note: Precursor is Ba(OH)2°8H2O and TiO2.

从表 1 可以看出,随着前驱物中 Ba, Ti 摩尔比增大,在 300 $^{\circ}$,8 h 制得粉体的晶粒粒度稍 有增大.图 1 给出了当 Ba, Ti 摩尔比为 2 ·1 时制得的 BaTiO₃ 粉体的 TEM 照片.此外,当前 驱物中 Ba, Ti 摩尔比改变时,制得的粉体的物相有比较大的改变,其XRD 谱如图 2.当前驱物 中 Ba, Ti 摩尔比为 1.0 时,制得的样品中出现了残余锐钛矿 TiO₂(101)面衍射峰(见图 2a).随 着前驱物 Ba, Ti 摩尔比的增大,这一衍射峰逐渐消失(见图 2b,图 2c).此外当Ba(OH)₂ °8H₂O

Fig. 1 TEM photograph of product prepared at 300 [°]C and with the Ba, Ti molar ratio of 2[•]1

和 TiO₂ 的摩尔比较大时,制得的粉体的物相中出现 BaCO₃ 衍射峰(见图 2b,图 2c). 这是因为 (即 Ba 过量)经水热反应以及后处理过程中与空气中 CO₂ 接触时间较长,部分 Ba²⁺与 CO₂ 作 用形成了 BaCO₃ 并混入粉体所致.由负离子配位多面体生长基元模型假设在溶液中 BaTiO₃ 晶体的生长基元为 Ba(OH)¹⁰⁻₁₂ 和 Ti(OH)²⁻₆.因此在溶液中晶体的生长过程包括如下两个 过程

(1) 生长基元(即负离子配位多面体)的形成过程

$$Ba^{2+} + 20 H^{-} + 10H_2 O = Ba(OH)^{10-}_{12} + 10H^{+}$$
(1)

$$Ti^{4+} + 40H^{-} + 2H_20 = Ti(0H)_6^{2-} + 2H^+$$
 (2)

(2) 负离子配位多面体通过脱水反应 形成组成为 $Ba_m Ti_n O_x$ (OH) $_y^{(-2m-4n+2x+y)-}$ 的基团(包括晶核)的过程. 在基团的界面 上 Ba^{2+} , Ti^{4+} 和 OH⁻ 络合, 而在基团内部 Ba^{2+} , Ti^{4+} 和桥氧连接在一起. 因此, 基团 的形成速度为负离子配位多面体生长基元 的形成速度和配位多面体之间的叠合速度 之积.

但溶液中究竟以那种形式的配位多面 体结构存在与各种配位多面体在溶液中的 稳定性有关. 在 T_1^{4+} 与 OH^- 形成的络合物 中 Ti $(OH)^{2-}$ 的稳定能^[12] 最大,为 14.04 e^2/r . 因此在溶液中 Ti⁴⁺ 易以 $Ti(OH)_{6}^{2-}$ 形式存在. 由于 Ba(OH)_{12}^{10-}的稳 定能^[12] 为负值,而 Ba (OH) $_{4}^{2-}$ (H₂O)₈ 的 稳定能为 4.32 e^2/r , 说 明 在 溶 液 中 $Ba(OH)_{12}^{10-}$ 生长基元的配位结构中配位体 10^{-10} OH^{-} 易被 H⁺ 屏蔽形成 H₂O. 因此在溶液 中 $Ba(OH)_{12}^{10-}$ 的浓度很低.此外,由于 Ba²⁺络合能力弱,在形成的基团表面上与 Ba^{2+} 络合的 OH^{-} 易被 H^{+} 屏蔽形成组成为 Bam Ti_nO_x (OH)_y^{(-2m-4n+2x+y)-} (H₂O)_z 的基团. 因此当负离子配位多面体之间叠 合时,表面上与阳离子配位的 H_2O 分子首 先得被OH⁻取代形成负离子配位基团.如

图 2 Ba Ti 摩尔比分别为 1 · 1, 1. 5 · 1, 2 · 1 在 300 [℃], 8 h 制得的粉体的 XRD 谱

$$Ba_{m} Ti_{n} O_{x} (OH)_{y}^{(-2m-4n+2x+y)-} (H_{2}O)_{z} + OH^{-} = Ba_{m} Ti_{n} O_{x} (OH)_{y+1}^{(-2m-4n+2x+y+1)-} (H_{2}O)_{z-1} + H_{2}O$$
(3)

由于取代反应为吸热反应,反应速度较慢,因此晶核形成速度主要由在溶液中 Ba (OH) $_{12}^{10^{-}}$ 生 长基元的形成速度和在界面上H₂O 分子被 OH⁻取代的速度决定.在中性条件下,由于生长基 元Ba (QH) $_{12}^{10^{-}}$ 的表面的 OH⁻易被 H⁺屏蔽使 Ba (OH) $_{12}^{10^{-}}$ 和 Ti (OH) $_{2}^{2^{-}}$ 之间的反应速度减慢, 此外,由于 BaTiO₃ 晶体的络合能比 TiO₂ 晶体的络合能稍大,因此在溶液中亚稳相 TiO₂ 也有 可能存在.所以在中性条件下由于在溶液中 Ba(OH)¹⁰⁻₁₂ 的浓度较小,而Ti(OH)²⁻₆ 的浓度较 大,一部分Ti(OH)²⁻₆ 互相络合形成 TiO₂.因此在中性条件下很难制得物相中不含有 TiO₂ 的 BaTiO₃ 粉体.当 Ba²⁺和Ti⁴⁺摩尔比增大时,在结晶前后 Ba(OH)¹⁰⁻₁₂ 的浓度保持比较大,有利 于 Ba(OH)¹⁰⁻和Ti(OH)²⁻₆ 互相结合形成 BaTiO₃.此外由于 Ba(OH)₂ 过量,溶液中 OH⁻ 的 量保持较大,由(3)式可见在基团表面上的 H₂O 易被 OH⁻取代,也有利于 BaTiO₃ 晶体的形 成.所以随着 Ba²⁺和Ti⁴⁺摩尔比增大制得的粉体中 TiO₂ 相逐渐消失.

2.2 温度与粉体的物相

此外也发现温度的变化对形成粉体的物相有一定的影响.本工作采用等摩尔 Ba(OH)₂°8H₂O和市售无水TiO₂粉为反应前驱物在不同的温度下进行水热实验,结果如表1. 从表1可以看出随着温度的升高制得的粉体的晶粒粒度稍有增大.图3给出了在400[℃]制得 的粉体的TEM照片.而随着温度的升高制得粉体的物相有较大的变化.其XRD 谱如图4.

从图 4 可以看出, 当温度从 75 [°]C升高 到 400 [°]C时制得的粉体中 TiO₂ 相的衍射峰 逐渐消失. 这是因为随着温度升高界面上与 阳离子络合的 H₂O 分子的稳定性降低, 界面 上的 H₂O 分子容易被 OH⁻ 所取代, 因此在 高温下易形成物相单一的BaTiO₃相. 在低温 时, 由于界面上与 Ba²⁺络合的 OH⁻ 被屏蔽, 使 BaTiO₃ 粉体的形成速度减慢. 此外, 在溶 液中生长基元 Ba(OH)¹⁰⁻ 的浓度较低, 而 Ti(OH)²⁻ 的浓度较高. 因此在低温时, 由于 Ti(OH)²⁻ 之间的反应速度较大, 一部分 Ti(OH)²⁻ 之间互相络合形成 TiO₂, 因此在 低温下得到的粉体中存在 TiO₂ 相.

图 3 在 400 [℃]制得的粉体 TEM 照片 Fig. 3 TEM photograph of powder prepared at 400 [℃]

2.3 晶粒粒度

粉体的晶粒粒度对陶瓷的烧结性能影响很大,特别是当粉体的晶粒粒度小于 100 nm 时, 由此烧结的陶瓷性能有很大变化. 在水溶液条件下制得的氧化物粉体的晶粒粒度有一个比较 确定的下限,而且复合氧化物粉体的晶粒粒度一般都比相应的单元氧化物粉体的晶粒粒度大. 如以 Ti(OH)4 胶体为前驱物,在 300 ^{°C}纯水中制得的 TiO₂ 粉体的晶粒粒度为 25 nm,其 TEM 照片如图 5. 而在相同条件下以Ba(OH)2 °8H2O和 TiO₂ 为前驱物,制得的 BaTiO₃ 粉体的晶粒 粒度为 170 nm,其 TEM 照片如图 6. 因此揭示复合氧化物粉体的晶粒粒度变化的原因对于降 低 BaTiO₃ 粉体的晶粒粒度很有意义.

从 BaTiO₃ 和 TiO₂ 格点能的计算结果可以看出 BaTiO₃ 的格点能比 TiO₂ 格点能稍大,如 当形成底面线度为 7×7的正四方柱锐钛矿基团时其格点能为2 327.4 kJ/mol, 形成底面线度 为 7×7 的正四方柱 BaTiO₃ 基团时的格点能为 2 955.9 kJ/mol, 因此由水热法制得的 BaTiO₃ 粉体的晶粒粒度应该比 TiO₂ 粉体的晶粒粒度小,而实验结果刚好相反.这是因为粉体的晶粒 粒度与成核速度有关,成核速度越太得到的粉体的晶粒粒度越小^[13].从负离子配位多面体生 长基元理论模型可以知道, 晶粒的成核过 程包括生长基元的形成过程和生长基元之 间通过脱水反应形成晶核的速度. 其成核 速度由反应速度最慢的反应步骤决定. 从 BaTiO₃ 的生长基元结合能和格点能的计算 可以看出, 晶核的形成速度主要由生长基 元Ba(OH) $^{10^-}_{12}$ 的形成速度决定. 也就是说, Ba(OH) $^{10^-}_{12}$ 的形成速度很慢, 因此由 水热法制得的 BaTiO₃ 粉体的晶粒粒度较 大. 而 TiO₂ 粉体的形成速度与溶液中 Ti(OH) $^{2^-}_{6}$ 的浓度有关. 由于 Ti(OH) $^{2^-}_{6}$ 的 浓度较大, 因此由水热法制得的 TiO₂ 粉体 的晶粒粒度较小. 所以由水热法制得的

- 图 5 以 Ti(O H)₄ 胶体为前驱物在 300 [℃]纯水 中制得的 TiO₂ 粉体的 TEM 照片
- Fig. 5 TEM photograph of TiO₂ powders prepared using Ti(OH)₄ gel as precursor at 300 ℃ in pure water

BaTiO₃ 粉体的晶粒粒度比 TiO₂ 粉体的晶粒粒度大.

3 结 论

通过水热法制备 BaTiO₃ 粉体的实验发现粉体的物相与反应温度和前驱物中 Ba²⁺和 Ti⁴⁺ 摩尔比有关.通过对 BaTiO₃ 粉体的形成机理的分析,给出了在溶液中形成 BaTiO₃ 粉体的生 长基元为 Ba(OH) $_{12}^{10-}$ 和 Ti(OH) $_{2}^{2-}$,指出了 Ba(OH) $_{12}^{10-}$ 的形成和叠合前在界面上的 H2O 分子 被OH₉取代是 BaTiO₃ 晶核形成的决定步骤,同时指出了产物 BaTiO₃ 粉体的格点能比反应

图 4 分别在 75 [°]C和 400 [°]C制得的粉体的 XRD 谱 Fig. 4 XRD patterns of product prepared at 75 [°]C and 400 [°]C

- 图 6 以 Ba(OH)₂°8H₂O和 TiO₂为前驱物在300 [℃]
 纯水中制得的 BaTiO₃ 粉体的 TEM 照片
- Fig. 6 TEM photograph of BaTiO₃ powders prepared using Ba(OH)₂° 8H₂O and TiO₂ as precursor at 300 [°]C in pure water

物 TiO₂ 的格点能大仅仅是 BaTiO₃ 粉体形成的必要条件.而反应是否进行完全还与粉体形成 时的成核速度有关.此外,通过水热法制备 BaTiO₃ 粉体的实验发现,以 Ba(OH)₂°8H₂O 和 TiO₂ 为前驱物制得的 BaTiO₃ 粉体颗粒之间的团聚较轻.这是因为在粉体的形成过程中,溶 液中 Ba(OH)^{10⁻}的浓度较低,由 Ba(OH)^{10⁻}和Ti(OH)²⁻6 反应形成 BaTiO₃ 的速度较小,形成 的晶粒较大,晶粒的表面能较大,因此而形成的晶粒团聚程度较轻.

参考文献

- 1 Phule P P, Risbud S H. Low temperature synthesis and processing of electronic materials in the BaO-TiO₂ system. J Mater Sci. 1990, 25; 1169
- 2 Christensen A.N. Hydrothermal preparation of barium titanate by transporting reactions. Acta Chem Scand, 1970, 24: 2447
- 3 Kaneko S, Imoto F. Synthesis of fine-grained barium titanate by a hydrothermal reaction. Nippon Kagaku Kaishi, 1975, 6: 985
- 4 Kutty T R N, Balachandran R. Direct precipitation of lead zirconate titanate by the hydrothermal method. Mater Res Bull, 1984, 19: 1479
- 5 Munugaraj P, Kutty T R N. EPR studies on donor doped BaTiO₃ grain boundary layer ceramics dielectrics. Mater Res Bull, 1985, 20: 1473
- 6 Vivekanadan R, Philip S, Kutty T R N. Hydrothermal preparation of Ba(Ti, Zr)O₃ fine powders. Mater Res Bull, 1987, 22: 99
- 7 Hennings D, Rosenstein G, Schreinemacher H. Hydrothermal preparation of barium titanate from barium titanate acetate gel precursors. J Europ Ceram Soc. 1991, 8: 107
- 8 Hennings D, Schreinemacher S. Characterization of hydrothermal barium titanate. J Europ Ceram Soc, 1992, 9:41
- 9 Malgorzata M L, Richard E R. Thermodynamic modeling of hydrothermal synthesis of ceramic powders. Chem Mater, 1993, 5: 61
- 10 施尔畏, 元如林. 水热条件下碳酸钡晶粒生长基元模型研究. 物理学报, 1997, 46(1):1
- 11 郑燕青, 施尔畏, 元如林, 等. 二氧化钛晶粒水热制备及其形成机理研究. 中国科学, 1999, 29(3): 206~213
- 12 严志铉编著. 络合物化学. 北京:人民教育出版社, 1960. 16~18
- 13 李汶军,施尔畏.水热法制备氧化锌纤维及纳米粉体.中国科学,1998,28(3):212

PREPARATION OF BaTiO₃ POWDER UNDER HYDROTHERMAL CONDITION

Li Wenjun Shi Erwei Zheng Yanqing Xia Changtai Yin Zhiwen (State Key Laboratory on High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences)

ABSTRACT The pure BaTiO₃ pow der was prepared using Ba(OH)₂°8H₂O and TiO₂ as precursor under hydrothermal condition. It is found that the phase of obtained product is related to the reaction temperature and the molar ratio of Ba²⁺ and Ti⁴⁺. The formation mechanism of BaTiO₃ powder is studied by growth unit model of anion ion coordinated polyhedra. It is pointed out that the growth units of BaTiO₃ crystal are Ba(OH)₁₂¹⁰⁻ and Ti(OH)₆²⁻. Moreover, the effect of the reaction temperature or the molar ratio of Ba²⁺ and Ti⁴⁺ on phase is explained reasonably.

KEY WORDS growth unit, barium titanate powder, phase

Received: November 18, 1998.