Journal of Inorganic Materials

$Ba(Mg_{1/3}Ta_{2/3})O_3$ 合成过程及烧结性的研究^{*}

卞建江 赵梅瑜 殷之文 (中国科学院上海硅酸盐研究所 上海 200050)

摘 要

利用 DTA/TGA、 XRD、 SEM 等分析手段,研究了不同起始原料制备的 BMT 合成过 程及其烧结行为,发现以 Ta₂O₅·*x*H₂O 为起始原料,可减少合成过程中产生的中间相,在较 低的温度下合成单相 BMT,改善了其烧结性.

关键词 合成过程,烧结性, Ta₂O₅·xH₂O

分 类 号 TB 323

1 引言

近年来,由于高功率微波介质谐振器广泛应用于卫星通讯领域,具有高品质因素(低 介电损耗)、高介电常数及低谐振频率温度系数介质材料的研究日益受到重视^[1],自从 Ba(Mg_{1/3}Ta_{2/3})O₃(BMT)陶瓷被报道在X、K波段具有极高的Q值以后,许多学者对此进 行了广泛的研究^[2~6].由于 BMT陶瓷具有很高的烧结温度,且其烧结性和微波介电性能强 烈依赖于相纯度,因此制备组成均一的单相 BMT 粉体是获得高Q值微波介质材料的必要 条件^[3].有人从制备工艺着手,试图通过用各种湿化学方法来制备单相 BMT^[7~10].但因大 部分方法均采用钽醇盐为起始原料而难于实际应用.鉴于目前多数 BMT 粉体仍采用固相 反应合成法.因而也有学者对其合成过程进行了研究^[5,6],以寻求获得单相 BMT 的理想途 径.但可能因各种研究实验所用原料来源不同,因此所得结果相差很大.

本工作首次用 Ta₂O₅·*x*H₂O 为起始原料,采用固相反应合成工艺,对 BMT 的反应合成 过程及烧结性进行了研究,并与以 Ta₂O₅ 为原料的同组份材料相比较.

2 实验

以高纯 BaCO₃(99.9%)、 MgO(99.5%)和自制的 Ta₂O₅·*x*H₂O(86.3% Ta₂O₅)为起始原 料,按Ba(Mg_{1/3}Ta_{2/3})O₃化学计量比配料.样品编号为BMT-1. 球磨混合 24h,将混合粉料烘 干后进行差热 (DTA)、热重 (TGA)及SEM分析,并将混合粉料置于氧化铝坩埚中于 700、 800、900、1000、1100、1200、1300、1400°C 煅烧 5min 后淬冷,对淬冷样品进行 XRD分 析.另将 1250°C/5h 合成粉料压块成型,于 1500~1600°C 烧结,并保温4h.样品烧结密度用 阿基米德排水法测得.起始原料比表面积用 JB-1型静态比表面仪测得,并用 ZETASIZER4 型粒度分析仪测定其平均粒径 Dav.

^{* 1997-07-16} 收到初稿, 1997-08-11 收到修改稿

为了进行比较,以 Ta₂O₅(99.99%)、MgO(99.5%)、BaCO₃(99.9%)为起始原料,以同样 工艺制备具有相同化学组成的 BMT,样品编号为 BMT-2.

3 结果和讨论

3.1 Ta₂O₅·xH₂O 粉体的特性表征

表1列出了两种不同起始原料的比表面积及其粒径 *D*_{BET} 和 *D*_{av},可以看出, Ta₂O₅·*x*H₂O 的比表面积约是 Ta₂O₅ 的三倍,平均粒径和 *D*_{BET} 约是 Ta₂O₅ 的 1/2. 但两种粉体的平均粒 径均比由比表面积计算所得的粒径 *D*_{BET} 大. 说明两种粉体均存在着一定程度的团聚.

表 1 Ta₂O₅和 Ta₂O₅·xH₂O 用料的比表面积及颗粒直径 ($D_{BET} = 6/\rho \cdot S_w$) Table 1 Specific surface area and particle size of Ta₂O₅ and Ta₂O₅·xH₂O

	Samples	$S/\mathrm{m}^2\cdot\mathrm{g}^{-1}$	$D_{ m BET}/\mu{ m m}$	$D_{ m av}/\mu{ m m}$
	$\mathrm{Ta}_{2}\mathrm{O}_{5}$	6.65	0.11	1.4
	${ m Ta_2O_5}\cdot x{ m H_2O}$	18.79	0.062	0.713
100 85 85	TGA DTA 128		Ta_2O_5 800 C / 1h 650 C / 1h $Ta_2O_5 \times H_2O$	β

图 1 Ta₂O₅和 Ta₂O₅·xH₂O 原料的差热及热 重分析曲线 Fig. 1 DTA/TAG curves (heating rate 10°C/min) for Ta₂O₅ and Ta₂O₅·xH₂O

450

Temperature / C

650

850

1050

250

50

 $2\theta/(^{\circ})$

Fig. 2 X-ray diffraction patterns for Ta_2O_5 and $Ta_2O_5 \cdot xH_2O$ powders calcined at different temperatures

Ta₂O₅·*x*H₂O 粉体的差热分析 (DTA) 曲线和热重分析 (TGA) 曲线示于图 1, 可以看出, DTA 曲线上 128°C 处有宽大的吸热峰,同时伴随着 TGA 曲线上 13.6wt% 的热失重.显然 此吸热峰和热失重同 Ta₂O₅·*x*H₂O 的脱水反应有关.另外, DTA 曲线上 717°C 处有一放热 峰,而 TGA 曲线上无热失重,此放热峰可能与脱水 Ta₂O₅·*x*H₂O 的相变有关.图 2 分别示 出了 Ta₂O₅·*x*H₂O 原料及其经 650°C/1h 和 800°C/1h 煅烧后的粉末 XRD 衍射图以及 Ta₂O₅ 的 XRD 衍射图.由图可以看出, Ta₂O₅·*x*H₂O 经 650°C/1h 煅烧后呈 δ 相, 800°C 时则为 δ 相和 β 相的混合物,而 Ta₂O₅ 则为 β 相.因此图 1 DTA 曲线上 717°C 处放热峰是 Ta₂O₅ 的

60 55 50 45 40 35 30 25 20

 $\delta \rightarrow \beta$ 相变反应.

3.2 两种不同混合粉料的形貌研究

图 3 所示了两种不同粉料球磨混合 24h 后的 SEM 照片.由图可以看出, BMT-1 样品 粉料混合较为均匀,而 BMT-2 样品则出现局部不均匀性.

图 3 两种不同样品球磨混合 24h 后粉末的 SEM 照片 Fig. 3 Scanning electron micrographs of ball-mixed powders for BMT-1 and BMT-2

3.3 BMT 合成过程的研究

3.3.1 两种不同混合粉料的热分析结果

图 4 示出了两种不同混合粉料的 DTA/TGA 曲线, BMT-1 样品 DTA 曲线上 130°C 处 的吸热峰 (对应于 TGA 曲线上约 5.5wt% 的热失重) 是 Ta₂O₅·xH₂O 的脱水反应, 这与图 1

图 4 (a) BMT-1, (b)BMT-2 两种不同混合料的差热及热重分析曲线 Fig. 4 DTA/TGA curves (heating rate 10°C/min) for (a) BMT-1 and (b) BMT-2

Ta₂O₅ · xH₂O 的 DTA 曲线上 128°C 处脱水吸热峰相一致,随着温度的升高,TGA 曲线上 从 700°C 左右开始逐渐出现热失重,并在 DTA 曲线上 835°C 处形成一吸热峰,对应于 BMT 的合成和 BaCO₃ 的分解反应.随着温度的进一步升高,DTA 曲线上不再有其反应峰,而 且 1050°C 以后,TGA 曲线上也不再有热失重.BMT-2 样品的 TGA 曲线上从 700°C 开始 出现热失重,而 DTA 曲线上 835°C 处的吸热峰同样是 BaCO₃ 的分解和 BMT 的合成反应. 值得注意的是,在 DTA 曲线上, 1050°C 处又出现一吸热峰,且此时 TGA 曲线上仍然有热 失重,直至1200°C.

3.3.2 两种不同混合粉料合成过程的 XRD 分析

图 5 示出了两种不同粉料的合成反应顺序, BMT-1 样品从 700°C 开始出现 BMT 相, 同时 BaCO₃ 开始分解,在 800°C 附近发生 Ta₂O₅ 的 $\delta \rightarrow \beta$ 相变. 至 835°C 时的反应速率迅

图 5 (a) BMT-1, (b) BMT-2 样品反应合成过程图 Fig. 5 Reaction sequence for (a) BMT-1 and (b) BMT-2 samples

速增加.同时开始形成 BaTa₂O₆ 和 β-Ba₄Ta₂O₆相, 1050°C时, BaCO₃基本分 解完全,随着反应温度的进一步提高, BaTa₂O₆和 β-Ba₄Ta₂O₉逐渐减少,致 1300°C时已完全合成单相 BMT.而 BMT-2样品同样中 700°C左右, BaCO₃开始分 解,并出现 BMT 相,但反应速度明显要 比 BMT-1样品慢,直至 1200°C,还有少量 BaCO₃和 Ta₂O₅存在.随着反应的进一步 进行,除开始出现 BaTa₂O₆和 β-Ba₄Ta₂O₉ 外,还出现少量未知相,在 1100°C 时未知 相消失,但随之又出现了 Ba₅Ta₄O₁₅相,至 1400°C 时,除 BMT 相外还有少量 BaTa₂O₆ 和 α-Ba₄Ta₂O₉存在.

从上述实验结果可看出,(1)虽然两 种样品在合成过程中都出现了中间相.但 BMT-2样品合成过程中产生的中间相种类

图 6 样品相对密度随烧结温度的变化曲线 Fig. 6 Changes of relative density with the sintering temperatures

和数量要比 BMT-1 样品多,且过程更为复杂. (2) 单相 BMT 的合成温度要比 BMT-1 样品高得多.这主要归因于两种样品所用 Ta₂O₅ 原料表性特征和反应活性 (见表 1),以及混合 粉料的均匀性不同 (图 3). BMT-1 样品所用原料 Ta₂O₅·*x*H₂O 颗粒较细、混合粉料组份均 匀,且由 Ta₂O₅·*x*H₂O 刚分解的 δ -T₂O₅ 在合成温度时,发生 $\delta \rightarrow \beta$ 相变 (图 5),促进了 BMT

的合成和 BaCO₃ 的分解,减少了合成过程中产生的中间相,在较低的温度下容易合成单相 BMT.

3.4 对烧结性的影响

两种不同样品的体密度随烧结温度的变化曲线示于图 6,由图可以看出,在同一烧成条件下, BMT-1 样品体密度要比 BMT-2 样品为高,并在 1600°C 达到理论密度的 98.6%.这可能同合成过程中产生的中间相种类和数量明显减少有关,从而可以认为:对于 BMT 材料来说,相组成的单一性有助于烧结的进行,并提高其致密度.

4 结论

以 Ta₂O₅ · *x*H₂O 为其始原料可减少合成过程产生的中间相,能在较低温度下合成单相 BMT,因而能明显改善其烧结性.

参考文献

1 Hiromu O. セラミッケス, 1995, 30 (4): 294

2 Matsumoto K, Hiuga T, Ichimma H. Proc. IEEE Int. Symp. Appl. Ferroelectrics, 6th, 1986. 118-121

3 Cheng X M, Suzuke Y. J. Mater. Electronics, 1994, 5: 244-247

- 4 Tochi Kunio, Journal of the Cerammic Society of Japan, 1982, 100 (12): 1464-1466
- 5 Kakegawa Kazuyuki. The Chemical Society of Japan, 1988, 1: 25-31

6 Lu Chung-hsin, Tsai Chen Cheng. J. Mater. Res., 1996, 11 (5): 1219-1227

7 Renoult Oliver. J. Am. ceram. Soc., 1992, 75 (12): 3337-3340

8 Ravichandran D Jr, Meyer R. Materials Research Bulletin, 1996, 31 (7): 817-825

9 Shingo Katayama. J. Am. Ceram. Soc., 1996, 79 (8): 2059-2064

10 Bian Jianjiang, Zhao Meiyu, Yin Zhiwen. Material Letters, (accepted)

Synthesizing Process and sinterability of $Ba(Mg_{1/3}Ta_{2/3})O_3$

BIAN Jian-Jiang ZHAO Mei-Yu YIN Zhi-Wen

(Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 China)

Abstract

 $Ba(Mg_{1/3}Ya_{2/3})O_3$ solid-state formation reactions and its sinterability were studied in relation with different raw materials, $Ta_2O_5 \cdot xH_2O$ and T_2O_5 raw materials with different phase structure and grain size were employed as the source Ta_2O_5 , along with BCO₃ and MgO. The experiment results indicated that the adoption of $Ta_2O_5 \cdot xH_2O$ can retard the intermediate phase and leads to more complete reaction at lower temperature than that with Ta_2O_5 , which is due to the local stoichiometric homogeneities of the mixed powder and the phase transformation Ta_2O_5 from $Ta_2O_5 \cdot xH_2O$. The sinterability of the powder prepared from $Ta_2O_5 \cdot xH_2O$ is much better than that of the powder from Ta_2O_5 .

Key words reaction process, sinterability, $Ta_2O_5 \cdot xH_2O$