掺杂 Bi4Ge3O12 晶体的生长和磁光性质*

冯锡淇 殷之文 刘建成 胡关钦 (中国科学院上海硅酸盐所)

> 阮 元 绩 (中国科学院上海冶金所)

摘 要

大的法拉第旋转和波长范围很宽 的高透过率表明 Bi₄Ge₅O₁₂(BGO)晶体在磁光应用方面 很有价值。我们 已用坩埚下降法生长了纯的和掺杂 BGO: *M*(*M* = Fe, Cr, Ni, W, Mn, Ce, Gd, Er 和 Nd)晶体, 并 测量了它们的 Verdet 常数和光 吸收谱,给出了 BGO 磁光器件原型的初 步实验结果。此外,简略地讨论了 BGO 的光损伤问题。

关键词:掺杂BGO;晶体生长;磁光性质

一、引 言

Bi₄Ge₃O₁₂(BGO)晶体的结构与硅铋矿 Bi₄Si₃O₁₂ 相似,为立 方结构(43*m*)。1973年, Weber 等发现了该晶体 Bi³⁺ 从 ${}^{3}p_{1} \rightarrow {}^{1}S_{0}$ 跃迁发 出的 480 nm 的荧光^[11],并很快成 为一种优良的闪烁晶体。同时,随着晶体生长技术的日臻成熟,为该晶体在其它方面的应用提供了良好的基础。

当前常用的稀土石榴石磁光材料大多用于红外或近红外波段,而可见光区的磁光材料则主要是磁光玻璃。BGO 晶体的 Verdet 常数远高于石英和重铅玻璃^[2],而且在 0.31~6 μm 范围内有很高的透过率,且光学各向同性。显然,BGO 作为一种在可见光区使用的磁材料是有吸引力的。

我们注意到掺杂能改进 BGO 的电光效应和闪烁性能,如 Gd 和 Ti 的掺入能提高 BGO 的闪烁效率^[3]。同样,通过掺杂改进的 BGO 的磁光性能也是一个令人感兴趣 的 问题。为此,我们测量并评估了现有的掺杂 BGO 晶体的磁光性能,这对于 BGO 晶体磁光性能的深入研究是有意义的。

二、晶体的生 长和测试

将纯度为 99.99%的 Bi_2O_3 和 99.999%的 GeO_2 粉料按 2:3 摩尔比混合,制成生长 BGO 单晶的多晶材料。采用 Bridgeman-Stockbarger 法生长晶体。掺杂晶体的生长是以已制成的

^{* 1989}年3月29日收到初稿, 4月21日修回。

国家自然科学基金的资助项目。

BGO 单晶块为原料,并以相应的氧化物作为掺杂剂,包括过渡金属和稀土元素两类。表1列出本文中掺杂 BGO 的掺杂剂、掺杂量和晶体颜色。长成的晶体尺寸约为1.5×1.5×10~15 cm³,除去籽晶以及杂质富集的底部。晶体中部未发现气泡、组分过冷等宏观缺陷,对于一些有着色作用的晶体,颜色分布基本均匀。

Sample No	1	2	3	4	5	6	7	8	9	10
Dopant	Ĕe₂O₃	Cr ₂ O ₃	NiO	WO ₃	MnO	Ce2O3	Gd ₂ O ₃	Er ₂ O ₃	Nd ₂ O ₃	undeped
Doping le- vel(wt%)	0.02	0.02	0.02	0.02	0.02	0.1	0.1	0.1	0.1	1
Crystal color	Yellow- ish	Green	No	No	No	Yellow- ish	No	Red- dish	Viole- tish	No

表 1 本工作所用的掺杂 BGO 晶体 Table 1. Doped-BGO crystals in this study

垂直于晶体生长轴方向切出晶片,抛光成厚度为 2 mm 的样品,约 15×15×2 mm³用 以测试吸收谱和 Verdet 常数。光吸收谱和 反射谱是在 Beckman 5270 photospectrometer 上 完成的。磁光法拉弟旋转的测试装置已在文献[4]中描述。以 633 nm 的 He-Ne 激光为光 源,采用石榴石单晶薄膜磁光调制器对光束进行振幅调制,并经选频放大,从而明显提高 了测量灵敏度,测量精度优于±0.01°。

紫外光辐照能导致部分掺杂 BGO 晶体的光致着色,这可能与杂 质离子的 价态变化有关。为此测量了掺杂 BGO 的 ESR 谱在紫外光照 前后的变化。ESR 谱是在 JES-FEIXG 谱仪上完成的,以高压汞灯作紫外辐照源。

三、实验结 果和讨论

充分氧化的 BGO 晶体是无色透明的。测量了它在 0.20~6 µm 范围内的透过率和反射 谱。证实了与文献[2]发表的数据是一致的,反射谱中的两个极小值分别为 293 nm 和246 nm,见图 1。部份掺杂剂有着色作用如表 1 所示。图 2 为掺过 渡金属离子的 BGO 晶体的 光吸收谱(300~800 nm)。由图可见,除 BGO:Cr 在可见光 区有明显的 吸收带外,其余的 晶体在 350~800 nm 波段内的光吸收系数均接近于未掺杂的 BGO 晶体,但 BGO:Fe、BGO :Cr 的光吸收边相对于纯 BGO 向长波一侧"红移"。图 3 为掺稀土的 BGO 晶体的光吸收谱。 其中 BGO:Ce、BGO:Gd 未观察到特征吸收峰,而 BGO:Nd 和 BGO:Er 的吸收谱则是 Nd³⁺ 和 Er³⁺离子所特有的。其中 BGO:Nd 的几个主要吸收峰分别对应于 ${}^{4I_{g/2}}$ 到 ${}^{4D_{1/2}}$ (350 nm)、 ${}^{2G_{7/2}}$ (575 nm)、 ${}^{4G_{5/2}}$ (586 nm)和 ${}^{4F_{7/2}}$ (743 nm)的跃迁吸收。BGO:Er 仅出现少数 几个吸 收峰,对应于 ${}^{4I_{15/2}}$ 到 ${}^{4G_{11/2}}$ (373 nm)、 ${}^{2H_{11/2}}$ (517 nm)和 ${}^{4F_{g/2}}$ (651.660 nm)的跃迁。在这 些吸收峰以外的波段,晶体仍保持低的吸收系数。

测量了未掺杂 BGO 晶体的法拉 弟旋转随磁场 的变化, 直至 4000 高斯(0.4 T)仍保持 线性,见图 4。掺杂 BGO 的室温 Verdet 常数列于表 2。测量用的磁场强度均为 2000高斯 (0.2 T)。从表 2 可以看出,在现有的掺杂种类和浓度下,BGO 晶体在 633 nm 处的 Verdet 常数无明显变化,在掺 Er、Nd 等稀 土时,甚至略有 降低。可见,对 BGO 的磁光 增强机 理尚需作更进一步的研究。虽然如此,如表 2 所示,BGO 的 Verdet 常数仍明显 优于石英

3.

doped BGO at room temperature

Sample thickness: 3 mm 和现有的磁光玻璃,我们用一块5×5×22 mm³的 BGO 晶体制成一磁光器件的原型,器件

day rotation in undoped BGO

外形尺寸不大于 4×4×4 cm³。当励磁电流为 0.5 A,磁场强度达 200 高斯(0.02 T),法拉弟 旋转角 2 Φr = 1.45°。

Samples No	1	2	3	4	5	6	7	8	9	10
Crystals	BGO:Fe	BGO:Cr	BGO:Ni	BGO:W	BGO:Mn	BGO:Ce	BGO:Gd	BGO:Er	BGO:Nd	BGO
Verdet constant o/T.mm	1.78	1.75	1.72	1.81	1.72	1.79	1.73	1.44	1.41	1.79

妻 2 接杂 BGO 晶体的 Verdet 常数 Verdet constants of doped BGO crystals Table 2.

用于激光调制和倍频目的光电子晶体如LiNbO3、Ba2NaNb5O15等必须考虑晶体的光损 伤问题。同样,用作光电子器件的BGO晶体也需要考虑光损伤问题,虽然它们可能有各自 不同的损伤机制。我们已在实验中观察到BGO:Fe、BGO:Ni、BGO:W和BGO:Mn的光致 变色现象。晶体经紫外光照射后,晶体转变为不同程度的淡棕色,其中以 BGO:Fe 着色最 深。同时, Fe³⁺ 和 Mn²⁺ 的 ESR 讯号幅度降低。而掺稀土的 BGO 则呈现出良 好的抗光损 伤性能。紫外光幅照并不能引起它们的光致变色。而且紫外光照射对 Ce3+、Gd3+、Er3+和

Nd³⁺ 的 ESR 讯号没有影响。这些实验结果以及光损伤机理将另文详述。

近年来,对于 Bi³⁺的磁光 强度效 应进行 了广泛 的研 究。在 YIG 晶体中以 Bi³⁺ 置换 Y³⁺。能将法拉第旋转提高一个数量级^[5];而且即使在 BGO 这样的抗磁晶体中,同样比不 含 Bi³⁺的抗磁晶体有高得多的磁光旋转。但至今对 BGO 磁光效应的机 理尚不清楚。王焕 元等根据测得的 BGO 晶体室温 Verdet 常数的色散关系提出,λ=200 nm 的能量相当于 6.2 eV 的电子跃迁是产生法拉第旋转的根源^[2],如何通过选择合适的掺杂剂和掺杂浓度或其它 工艺进一步增强 BGO 的磁光效应,同时提高 BGO 的抗光损伤的能力,这是一个有现实意 义的问题。本文仅仅是我们的初步研究结果。进一步的研究尚在进行中。

参考文献

[1] Weber, M. J. and Monchamp R. R.: J. Appl. Phys., 44, 1973; 5495
[2] 王焕元、贾惟义、沈建祥:物理学报, 34, 1985; 126
[3] Takagi, K.: J. Crys. Growth, 52, 1981; 584
[4] 阮元绩、封敬璋、朱正中:仪器仪表学报, 3, 1983; 339
[5] 王焕元等:物理学报, 30, 1980; 1554

Growth and Magneto-Optic Properties of Doped $Bi_4Ge_3O_{12}$ Crystals

Feng Xiqi Yin Zhiwen Liu Jiancheng Hu Guanqin

(Shanghai Institute of Ceramics, Academia Sinica) Ruan Yuanji

(Shanghai Institute of Metallurgy, Academia Sinica)

Abstract

Large Faraday rotation together with high transparency in wide wavelength region makes bismuth germanate $Bi_4Ge_3O_{12}$ (BGO) crystal a valuable magneto-optic material. In this study, the pure BGO and BGO:M(M = Fe, Cr, Ni, W, Mn, Ce, Gd, Er and Nd) crystals were grown by Bridgeman-Stockbarger method, and the magneto-optic Verdet constant and optical absorption spectra of doped BGO were measured. The preliminary experimental results of BGO magneto-optic device protype are given. Besides, "Radiation damage" in BGO was briefly discussed.

Key words, Doped BGO; Crystal growth: Magneto-optic properties

6 卷