第	+	八	卷第二期	
1	9	9	0年4月	

PLZT陶瓷的晶界结构*

宋祥云 冯景伟 温树林 殷之文

(中国科学院上海硅酸盐研究所)

摘 要

根据PLZT透明铁电陶瓷晶界的HREM象的实验结果,提出了可能存在的晶界原子结构模型。 这些 晶界模型不仅清晰地展现了 PLZT晶界的结构特点, 而且有助于工艺改进, 进一步提高材料的性能。 同时, 对PLZT陶瓷晶界的研究结果也可供类似结构的陶瓷材料参考。

关键词:铁电陶瓷,晶(粒间)界,结构模型

一、引言

有关PLZT透明铁电陶瓷的相变、性能、显微结构和缺陷等方面的研究已有不少报 道('-')。由于晶界对陶瓷的性能起着重要作用,因此晶界结构的特点一直是材料研究的一个 重要内容。然而在陶瓷体系中,有关大角度晶界研究的资料 甚少'''。本工作使用 JEOL-200CX 高分辨电子显微镜(HREM),观察了PLZT陶瓷的晶界,有关电镜试样的制备与 实验方法已经发表'''。图1、图2是两张反映PLZT陶瓷晶界结构的HREM象照片。本文 根据PLZT陶瓷的结构特点和图1、图2的实验结果,提出了几个可能的晶界原子结构模型 构想。

图 1 PLZT陶瓷[111]方向和[100]方向 两晶粒晶界的高分辨率的晶格象 Fig.i HREM image of two grains of which one along [111] and the other along [100] and their boundary Correcting [001] for [100] in fig.1

图 2 PLZT陶瓷同为[110]取向的两晶粒 晶界的高分辨率的晶格象 Fig.2 HREM image of two grains both along [110] and their boundary

^{* 1989}年4月28日收到。

二、结构模型

由于PLZT晶界的原子结构模型完全是依据图 1、图 2 和它们的结构特点而提出来的, 现从以下三个方面进行讨论:

1.PLZT晶体结构的几个基面投影

PLZT透明铁电陶瓷为ABO₃型钙钛矿结构,根据图 1、图 2 的结果,首先须了解该结构在三个低指数晶面的投影情况。图 3 为PLZT在[100]、[110]和[111]三个方向的投影。 从图 3 可以看出,它们中的Ti(Zr)—O八面体和Pb(La)的投影情况在三个不同方向上是 有区别的。

Fig.3 Projection of PLZT perovskite structure along different directions

2. 晶界的HREM象

图 1 是两个不同取向晶粒组成的 HREM晶界象。从晶格条纹和交错区的电子 衍射证实

188

(分别示于图的角上),图中晶界的上面部分是晶粒沿[100]方向的晶格象,也即对应图 3a 的投影情况;而图中晶界下面那部分是晶粒沿[111]方向的晶格象,它的两维晶格排列对应于 图3c。在这两晶粒的交接处有一宽约6Å的界面,便是本文所指的晶界。对该晶界仔细观察可以 发现,两边规则排列的晶格条纹,在晶界处已消失。并且晶界处的衬度也不同于两边的 晶 粒。

图 2 晶界由两颗同样[110]取向的晶格组成,它们的结构特点对应于图3b。从图2可见, 这两颗晶粒约以110°(或70°)角相交于晶界。为便于讨论,可以把该晶界分为两部分(如图 2 中黑线所示)。在AB部分的晶界非常窄,仅几个原子间距的宽度,某些地方的两晶格条 纹似乎已连在一起,而在晶界C处,却存在相对较宽的晶界相,显然,这晶界相是杂乱原子 的无定形玻璃相。另外,图中用黑圈示意的是MD区域,可能是一种极性微区结构⁽⁹⁾。

3.PLZT陶瓷的晶界结构模型

根据图 1、图 2 所示HREM象和图 3 所示钙钛矿结构的 投影特点, 分别提出了如图 4 和图 5 所示两个可能的PLZT陶瓷晶界的原子结构模型构想。

图 4 是对应于图 1 的晶界结构模型。图中用箭头示意出晶界位置。在晶界两边分别是 [100]和[111]两晶粒的投影结果。图中示意的原子排列仍与图 3 一致。从模型可以看出,上 下两边的原子在晶界处不存在周期性的重合,它们的Ti(Zr)—O八面体彼此间也不能匹配。因 此,在它们的界面留出了宽度为几个埃(Å)的原子杂乱区域(图中用杂乱的小黑点表示), 其晶界作为两个不匹配的晶格以大角度相结合时,是界面能量的一种缓冲过渡层。在此,把

189

这种晶界称为不相干晶界。另外,由于晶界处的原子分布无序,也降低了晶界的原子密度。 该结具与图1所示的晶界相一致。

图 5 的晶界模型示意图对应于图 2 中AB部分的晶界。从模型可以看出: 该晶界两边的 晶粒同为[110]取向,它们的 Ti(Zr)-O八面体以110°(或70°)夹角相交于晶界。仔细 观 察还可以发现:对于晶粒A,八面体中的O原子和Pb(La)原子,它们每隔 4 个Ti(Zr)-O 八面体便与晶粒B的相同原子重合或相干一次,即每隔 4 × d₁₁₀ = 11.5Å的间距,两个八面 体的顶角重合一次。对于晶粒B.则是每隔 3 个Ti(Zr)-O八面体,即3×d₁₀₀ = 12.2Å间 距与晶粒A的八面体顶角共用一次。根据鲍林第三规则,八面体顶角共用有利于降低离子间 的静电斥力,从而使结构稳定。同时,两晶粒的八面体顶角能在晶界处共用,从而也能在晶 界处出现它们的晶格相干重合的情况。所以我们可以在图 2 的AB部分 看到某些晶格条纹相 连的现象。

三、结 语

对于PLZT 陶瓷大角度晶界,可以这样认为:当相邻两晶粒的空间(三维)取向都不一 致时(如图1),很难使它们在晶界处形成相干重合的晶界,在它们之间往往留下几个乃 至更多原子的过渡层。然而,当相邻两晶粒的空间取向在某一方向相一致时(如图2),则 有可能形成局部相干重合的大角度晶界。当然,由于受杂质原子或工艺条件等影响,也会出 现局部的玻璃相区域(如图2中C处)。如果相邻两晶粒的空间取向有两个方向(两维)相一 致时,则可能产生孪晶界。我们正在继续进行实验来寻找这种孪晶界。

参考文献

- [1] Z.W.Yin, X.M.He, C.E.Li, et al., Proc.First China-U. S.Seminar on Microstructure and Properies of Ceramic Materials, Shanghai, Science Press, Beijing(1984)410.
- [2] P.C.Wang, Z.L.Chen, X.M.He, et al., Ferroelectr, Letters, 4(1985)47.
- [3] Z.W.Yin, Proceedings of International Symposium on Applications of Ferroelectrics, 1986, 8-11 June, Illinois, USA(1986)159.
- [4] X.T.Chen, D.N.Huang, and Z.W.Yin, ibid, (1986)139-145.
- [5] Z.W.Yin, X.T.Chen, X.Y.Song, et al., Ceram. Int., 15(1989)311.
- [16] 朱祥云、温树林、殷之文,中国科学,A辑[12](1988)1310。
- [7] W.D.Kingery, H.K.Bowen, D.R.Uhlman, Eds., Introduction to Ceramics, Second Edition, John Wiley and Sons, Inc. (1976)189.
- 18] 朱祥云,温树林,化学学报,43(1985)282。

CRAIN BOUNDARY STRUCTURES IN PLZT CERAMICS

Song Xiangyun Feng Jingwei Wen Shulin Yin Ziwen (Shanghai Institute of Ceramics, Academia Sinica)

Abstract

Some possible atomic structural models of the grain boundary in PLZT transparent ferroelectric ceramics were constructed according to the HREM image photomicrographs taken near the grain boundary by using a high resolution electron microscope. These models not only give a clear picture of the grain boundary structure in PLZT ceramics, but can also be used as a reference for grain boundary research of other ceramics with similar structure

Key words, ferroelectric ceramics, grain boundary, structural models

190