Energy Transfer in Er:CeF₃ Crystals

To cite this article: Lei Ning et al 1998 Chinese Phys. Lett. 15 603

View the article online for updates and enhancements.

Related content

- <u>Fluorescence Properties of Nd:CeF₃</u> <u>Crystals</u> Gao Ming, Feng Xiqi, Hu Guanqin et al.
- <u>Cascade Energy Transfer in CeF₃ Crystals</u> Shi Chao-Shu, Deng Jie, Wei Ya-Guang et al.
- <u>Scintillation Characteristics and Radiation</u> <u>Damage of Ce-Doped Bi₄Si₃O₁₂ Single</u> <u>Crystals</u> Kenji Harada, Mitsuru Ishii, Nachimuthu Senguttuvan et al.

Recent citations

- <u>Synthesis of CeF3 nanostructures via</u> <u>ultrasonically assisted route and</u> <u>characterization of the same</u> Yang Liu *et al*
- <u>Upconversion Luminescence of the Er³⁺</u> and Yb³⁺ <u>Codoped Transparent</u> <u>Vitroceramics</u> Li Yun-Bai *et al*

Energy Transfer in Er:CeF₃ Crystals *

LEI Ning(雷宁)¹, FENG Xi-qi(冯锡淇)¹, HU Guan-qin(胡关钦)¹, YIN Zhi-wen(殷之文)¹,

YUAN Shuai(袁帅)², XUE Shan-hua(薛善华)², HOU Xiao-yuan(侯晓远)²

¹Laboratory of Functional Inorganic Materials, Shanghai Institute of Ceramics,

Chinese Academy of Sciences, Shanghai 200050

²State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433

(Received 12 February 1998)

Two $Er:CeF_3$ crystals doped with 1.0 and 1.2 wt.% Er_2O_3 and one pure CeF_3 crystal were grown, their absorption and fluorescence spectra at room temperature were measured. Compared with pure crystal, the emission intensity of Ce^{3+} in $Er:CeF_3$ decreased obviously, it is the sign of energy transfer from 5d state of lattice Ce^{3+} to 4f state of Er^{3+} ions which improves the stimulation emission efficiency of Er^{3+} ions.

PACS: 78.55. Hx, 78.45. +h

The fluorescence properties of Ce^{3+} compounds and Ce^{3+} doped materials are intensively studied¹⁻³ because some of them turned out to be good candidates for sintillation detectors. One of the very promising materials—— CeF_3 crystal has already been investigated in scintillation and laser regime^{4,5} and compared with other materials. Gao *et al.*⁶ reported fluorescence properties of Nd: CeF_3 crystals. The purpose of our work is twofold: first, to find effects of doping ions on scintillation properties; second, to improve the laser efficiency of CeF_3 -based crystals.

We have been undertaking the growth of CeF₃ crystals and have already obtained large high-quality crystals. Based on the growth techniques of CeF₃ crystals, we grew two CeF₃ crystals doped with different concentrations of Er^{3+} . The purities of CeF₃ and ErF_3 powders are 99.9 and 99.99%, respectively. The crystals are grown by Bridgeman method in a high vacuum furnace and the descending rate is 2 mm/h. The concentrations of Er^{3+} in CeF₃ crystals are 1.0 and 1.2 wt.%, respectively. Er^{3+} ions distribute in the crystals homogeneously.

 CeF_3 has a hexagonal crystal structure (C6/mcm), the ionic radius of Ce^{3+} is 1.10 Å, isomorphic substitution of Er^{3+} is easily effected without charge compensation.

The absorption spectra of crystals were measured by a Shimadzu UV-2501 spectrophotometer. Figure 1 illustrates the comparison of absorption spectra of three crystals at room temperature. The absorption edge of pure CeF₃ is at 300 nm, the crystals with Er^{3+} dopants have very strong absorption at about 326 nm, in fact, their absorption edge is still at 300 nm, several peaks of Er^{3+} transitions from ground state to upper levels can be observed. The ground state of Ce³⁺ contains one 4*f* electron shielded by $5s^25p^6$ shells. The energy levels of Ce³⁺ are shown in Fig. 2, one f - ftransition occurs at 2000 cm⁻¹ and f - d transitions start at $31000 \, \text{cm}^{-1}$.

Fig.1. Absorption spectra of ${\rm CeF}_3$ crystals with and without ${\rm Er}^{3+}$ dopants.

Fig. 2. Energy levels of Ce^{3+} and Er^{3+} ions.

^{*} Supported by the National Natural Science Foundation of China under Grant No.59732040. ©by the Chinese Physical Society

Fig. 3. Fluorescence spectra of CeF₃ crystals, curve *a*: pure, curve *b*: with $1.2 \text{ wt.\% Er}^{3+}$, and curve *c*: with $1.0 \text{ wt.\% Er}^{3+}$.

Fig. 4. Fluorescence spectra of pure CeF_3 crystal pumped by 266 nm.

There are two ways of energy transfer in crystals, one is from doping ions to other doping ions, another is direct energy transfer from lattice to doping ions. In latter case, donors have much more concentrations than those in the first case and result in greater transfer efficiency. The energy levels of $CeF_3:Er^{3+}$ are shown in Fig. 2, it can be seen that the 5d state of Ce^{3+} is close to 4f excited state of Er^{3+} , so that the 5d - 4f energy transfer is possible.

The peak of excitation spectrum of pure CeF3 crystal is at 250 nm, which is in the absorption edge of CeF_3 crystals, so it can be absorbed by the lattice completely. The fluorescence measurements are performed by LS-50B spectrophotometer, the slit width is 10 nm, Fig. 3 is emission spectra of three crystals (excitation wavelength of 250 nm). In pure crystal there are two peaks, one is at 340 nm, which is trap emission of Ce^{3+} , another is at 292 nm, which in fact is superposition of two peaks (285 and 305 nm, respectively), as can be seen from the emission spectra of crystals pumped by the fourth harmonic of Nd:YAG laser (266 nm, ARC Spectrapro 275), shown in Fig. 4. In CeF_3 : Er^{3+} crystals, the peak at 395 nm is the emission of Er³⁺ originated from ${}^2P_{3/2} \rightarrow {}^4I_{13/2}$ transition, compared with pure CeF₃ crystal, it is easily seen that the intensity of the 292 nm peak is decreased obviously, the 340 nm peak disappears, and the intensity of the $395 \,\mathrm{nm}$ peak is increased with increasing Er^{3+} concentration. On the other hand, when excitation wavelength is 350 nm, the emission intensity of Er^{3+} at 395 nm is much lower than that pumped by 250 nm. It means that when Ce^{3+} cannot be excited effectively, the emission of Er^{3+} is weak. It can be concluded that there is energy transfer from Ce^{3+} to Er^{3+} .

REFERENCES

- ¹ J. L. Allin, M. Couchaud, B. Ferrand, Y. Grange, B. Utts, and Ch. Wyon, in *Mater. Res. Soc. Symp. Proc.*, edited by W. J. Weber (1994) Vol. 348, p.105.
- ² A. J. Wojtowicz, M. Balcerzyk, E. Berman and A. Lempicki, Phys. Rev. B 49 (1994) 14880.
- ³ W. W. Moses, S. E. Derenzo, M. J. Weber, A. K. Chandhuri and F. Cerrina, J. Lumin. 59 (1994) 89.
- ⁴ J. R. O'Conor and W. A. Hargreaves, Appl. Phys. Lett. 4 (1964) 208.
- ⁵ M. Nikl, J. A. Mares, E. Mihokova, A. Beitlerova, K. Blazek and J. Jindra, Solid State Commun. 87 (1993) 185.
- ⁶ GAO Ming, FENG Xiqi, HU Guanqin and YIN Zhiwen, Chin. Phys. Lett. 11 (1994) 451.