联系我们  |  网站地图  |  English   |  移动版  |  中国科学院 |ARP
站内搜索:
首页 简介 管理部门 科研部门 支撑部门 研究队伍 科研成果 成果转化 研究生教育 党建与创新文化 科普 信息公开 办公内网 OA系统
学术活动
Development of Light Ene...
First-principles Study o...
无损检测技术在陶瓷制造与...
FeSi2基热电材料的相变、...
中国散裂中子源及探测器研制
Electric Field Control o...
弛豫压电单晶及其应用
Some inorganic functiona...
核安全用新型卤化物闪烁材...
2017青年学术交流报告会
超快光学—追寻最快激光脉...
Recent Developments on P...
从小型试验装置到大型试验...
ICPMS痕量放射性污染检测...
当前高能物理和稀有事件物...
现在位置:首页>新闻动态>学术活动
Microscopic Insights into Conductivity and Stability of Solid Electrolyte Interfaces
2017-12-11 09:51:33 | 【 【打印】【关闭】

SEMINAR

The State Key Lab of

High Performance Ceramics and Superfine Microstructure

Shanghai Institute of Ceramics, Chinese Academy of Sciences

中 国 科 学 院 上 海 硅 酸 盐 研 究 所 高 性 能 陶 瓷 和 超 微 结 构 国 家 重 点 实 验 室


Microscopic Insights into Conductivity and Stability of Solid Electrolyte Interfaces

Miaofang Chi

Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States


时间:20171213日(星期三)10:00

地点:嘉定园区F51)会议室


欢迎广大科研人员和研究生参与讨论!

联系人:史迅69163528 


报告摘要:

Despite their different chemistries, novel energy-storage systems, e.g., Li- air, Li-S, all-solid-state Li batteries, etc., share the same concept of using solid electrolyte materials to enable the use of lithium metal. An ideal solid electrolyte material must be highly ionically conductive and exhibit desirable stability with metallic lithium. Over the past several decades, new solid electrolyte materials were developed that demonstrated high conductivity, which is comparable to that of organic liquid electrolytes. However, unexpectedly high resistivity from grain boundaries and electrolyte-lithium interfaces is often observed and is the major limitation in realizing the practical application of these materials. Due to spatial confinement and structural and chemical complications, experimentally probing these interfaces is challenging. Thus, the exact origins of the interfacial resistivity are unclear. Here, in situ and atomic-resolution scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) are used to study these interfaces. Oxide solid electrolytes, including Li0.33La0.55TiO3 (LLTO) and Al-Li7La3Zr2O12 (LLZO), and LIPON, are used as prototype materials. The atomic-scale origin of the high grain boundary resistivity in polycrystalline LLTO was revealed to be due to the formation of a TiOx binary oxide layer with a thickness of 2-3 unit cells. This layer is deficient in Li ions and does not contain adequate vacancy sites for Li+ transport, significantly lowering the overall ionic conductivity in LLTO. At the LLZO-Li interface, an ultra-thin, self-limiting interfacial layer was discovered by utilizing in situ STEM, serving as a passivation layer that stabilizes the interface. In addition to chemical and structural transformations, interfacial polarization could also significantly influence mass transport and charge transfer behavior at ionic interfaces. A direct experimental approach to measure ion conduction behavior of Li ions at local interfaces will also be introduced.

版权所有 中国科学院上海硅酸盐研究所 沪ICP备05005480号
长宁园区地址:上海市长宁区定西路1295号 电话:86-21-52412990 传真:86-21-52413903 邮编:200050
嘉定园区地址:上海市嘉定区和硕路585号  电话:86-21-69906002 传真:86-21-69906700 邮编:201899